MIND News Recommendation Competition

MIND News Recommendation
Technical Report

09.13.2020

Huige Cheng

Sogou

Overview:

In this competition, we will use 4 weeks data to predict user clicks in the 5th week(test
dataset). With 87.5% new docs in the test set we can view this problem as a content based
recommendation problem. Better representation of news and clicked news sequence is key
for this problem.

| do the contest by myself, as training the model is very costly using P100 or T4, | did not try
complex models, just relying on the familiar networks from my previous experience.

Open Source part of my model code:

https://github.com/chenghuige/mind

Dataset info:

User’'s max history length might be > 400 but average history length is about 35.

Only 4% positive ratio, we used downsampling to make the train set positive ratio about

16.5%.

train/his_max
tag oA,

_max.

How to evaluate?

5

2Em

“_‘”:‘ ;‘;;;Ag
% Hilx
5 E - 5 8 B 2 B %%

"
x|
1]
x|

A

1. There are huge difference between dev set(only 1day) and test set(1 week)

dev test
New user 15.3% 22.1%
New doc 32.3% 87.5%

2. New doc ratio is much higher in the test set then dev, that means algos highly
depend on docid which got good results on dev set will not perform well on test set.

But we found docid still helpful for the dev performance and we still use doc id as
an input feature.

3. Inorder to make dev and test results consistent we randomly masked 92% docids
as UNK in the dev set which do not exist in the train set for evaluation and we found
using this strategy we got similar results on both dev and test.

4. However if we add context features like titles of the same impression we can still
increase the dev result a lot but get worse results on the test set.

Anyway just using id and nlp features of news we can get consistent results on both
dev and test.

5. We have found global auc of new docs is a very important evaluation metric also.
Higher new doc auc means better generalization on new docs.

6. We found evaluation of 100w instances is enough(not much difference with using all
dev instances), so we just use the first 100w dev instances for evaluation. We also
use async validation so we can get evaluation results in parallel with the training
process.

The dev result | will mention below will always be using the first 100w dev instances
and randomly mask 92% docids.

Key points of model:
1. Pointwise training
2. Shuffle between impressions

We found shuffle between impressions will get better per impression auc(which is
the metric we are focusing on) while totally random shuffle all instances will get
better global auc.

3. Downsampling of negative instances

With only about 4% positive ratio. We found just using ¥ negative instances can get
nearly the same result while greatly reducing training time.

We just randomly shuffle each impression to get s negative instances per
impression. By doing this we got 5 datasets(all positive instances + s negative
instances dataset 0, dataset 1... dataset 4).

We did not do much experiments here, this might not be the best down sampling
method ,for example we might leave all negative instances for impressions with less
instances(<5). Also the split method we use will make dataset 1 with less negative
instances then dataset 0.

We just use dataset 0 for most of our experiments, dataset 1-4 will be used for
ensemble only if needed.

4. Use all available infos
Class, entity, title, abstract and body all useful. (MIND paper has same conclusion)

We just use the latest 10 abstracts and bodies in this competition for fast training.

5.
6.

After the contest we find that increasing the number of bodies can may further
improve model performance.

Adds dev data for training
Ensemble

Just use 1 model training on 5 different datasets in parallel(different negative

instances) and finally do mean ensemble of the 5 models(Our best test 10% result used 4
datasets 0,1,2,4, due to time limit dataset 3 not finishing inferencing).

7.

Model structure

We model each field like uid,docid,class, title, abstract,body separately and use
concat + dot pooling(inner product for each field pair like DLRM) before feeding
to mlp.

For candidate news we use attention pooling for words of title, abstract and body.

For history clicked news we use attention pooling for docids, cats,subcats and use
DIN attention pooling for entities, titles, abstracts and bodies.

Features:

['uid’, 'docid’, 'history_docids',

'cat’, 'sub_cat', 'history_cats','history_sub_cats',

'title_entities', 'abstract_entities',

'history_title_merge_entities', 'history_abstract_merge_entities’,
'title', 'history_titles',

'abstract’, 'history_abstracts,

'body’, 'history_bodies’]

MLP
(1024,512,256)

Concat & Bi Intersection

Att pooling Att pooling DIN Att pooling

| [ania] [ont| ot [omity] e veat| busy G| cus]] [t o] beacts bt

Candidate News features History Clicked News features

8. Nlp part details:
e Using bert base cased tokenizer and it's vocab(28996)
e Word embedding init using glove pretrain(on train+dev+test title and abstract
corpus), 12 normed.
e For entity wiki embedding also do 12 norm before loading.
e Using attention pooling for title encoding .
e Using DIN attention pooling for history titles encoding.
9. Parameters:

Adam optimizer, base Ir 0.001, batch_size 1024, 1gpu training

Lr schedule: 0.1 epoch warm up, triangle Ir, Tepoch training.

Uid: freq > 10 in train, total size 113534
Docid : all in train + dev + test, total size 130381

Title: max 30 words.
Abstract: max 50 words.
Body: max 100 words.
Max history docids: 200
Max history titles: 50
Max history abstracts: 10
Max history bodies: 10

Entity: max 200 doc history with each doc at most 2 entities.

What do not work on the test:

1. Tring to optimize auc directly or other loss methods like adding pair loss.
2. Dense features like history length, doc freshness, and other features.
3. Context features like time, impression related features.

Maybe the test set impression sequence is shuffled ?

Adding surrounding recall titles in the same impression did improve on dev set
+0.4% auc but got lower auc on the test.

4. Training day by day.

Training day by day will pay more attention to latest instances, and be natural to
add dev data at day 7. However training day by day will converge slower and the
final result is not as good as random shuffle between impressions.

5. Training more than 1 epoch.

| spent a lot of time investigating this. Might due to overfit on docid and uid,
removing them helps on this, but since it hurt the performance on dev set | did not
try to submit results without docids on the test.

Milestones:

Dev auc Test auc
(first 100w with masked docid) | (10%)
uid + docid + history_docids 0.61 0.5272
(without dev mask docid)
+cat, entity 0.6763
+title, abstract 0.6987 0.6979
Adjust parameters (base model) 0.7004 0.7036
+body (body model) 0.7042 0.707

(best single model)

+dev data

0.7104
(best single mode with dev data)

4 datasets of body model ensemble

0.7133

Additional Experiments:

After the contest, we did some additional experiments using kaggle and colab tpu, it can
train body.large in 45 minutes while using a single P100 needs 5hours to
finish(unfortunately for me using the same code to train on multiple gpus is very slow).

With tpu 8 cores we use batch size 256 * 8 = 2048, and base Ir 0.002 seems better than

0.001.

1. Use more abstract and body histories.

From 10 to 30(Body.large) and 50(Body.large2) the auc on dev set can increase
0.3%-0.4% and all other metrics also improve so | believe this also works on the test.

Model AUC AUC MRR NDCG@5 NDCG@10 | AUC
(test 10%) (dev) (dev) (dev) (dev) (new doc)
base 0.7036 0.7004 0.3477 0.3888 0.4502 0.7125
body 0.707 0.7042 0.3502 0.3918 0.4531 0.7187
body.large 0.7069 0.3518 0.3944 0.4550 0.7204
body.large2 0.7077 0.3527 0.3951 0.4562 0.7242
body.large2 0.7084 0.3519 0.3936 0.4553 0.7207
+multi-sample
dropout
E u elics
GO bt enihrn /N i o e s
() bodylege?
u. (?;ﬁmm i :\?/‘_. =1
/
41| nEg | LEQ - nEH . R nER - %
=Q nE0 . nED nzm
Eval on each 0.1 epoch
2. Bert
Thanks to tpu we can try bert encoder now. | choose tiny-bert(2 layers, 2heads,
output 128) for speed concern.
Let's first just compare using only uid,docid,history_ids and title, history_titles.
Results show bert is a much better title encoder than using simple words attention
pooling.

Continue pretrain performs even better, | think the next sentence prediction also
helps a lot here as we use clicked titles sequence as training corpus.

Model AUC MRR NDCG@5 | NDCG@10 | AUC TrainTime
(dev) (dev) (dev) (dev) (new doc)

titleonly 0.6916 | 0.3445 0.3826 0.4443 0.6996 40m

uid,docid,history_docids

title,his_titles

bert.titleonly 0.6987 | 0.3465 0.3862 0.4483 0.7123 Th55m

Use bert to encode title

(uncased_L-2_H-128_A-2)

bert2.tiitleonly 0.7034 | 0.3504 0.3906 0.4526 0.7273

Continue pretrain on clicked

titles (train + dev + test)

Then we add bert title to body.large2. But interestingly it did not improve auc compared to
baseline model body.large2(though other metrics mrr, ndcg all improve). Seems adding
bert title is overfit prone ? One possibility is batch size, as for using bert we have to use
batch size 128 * 8 on tpu v3 and 64 * 8 on tpu v2, and seems the smaller batch got worse
results. | believe we might get better results with more experiments and at least the bert
version can help a lot on ensemble:)

Model AUC MRR NDCG@5 NDCG@10 | AUC TrainTime
(dev) (dev) (dev) (dev) (new doc)
body.large2 0.7077 0.3527 0.3951 0.4562 0.7242 1h
+bert title 0.7065 0.3551 0.3965 0.4581 0.7244 2h tpu v3
3h tpu v2
+multi sample 0.7072 0.3553 0.397 0.4579 0.7296
dropout
Replace 6h30m tpu v3
title,abstract,body
all to bert encoding

metics
() bodlargel
edylagel £ auc/new user auc/old_user global_aue/al olobel_auc/new doc global 2uc/old_doc
O 5 o T manesiag: g i e e e g metncsfaugioid s ta moines/glo3al augyal Tag metnics/gobaLaveinew,dog o matics/glotal /o o
bodylarge2 oer
0 tide

) Eedplage bor
* tilemitep

TOGGLE AL RUKS
/

nEQ nZ2[nEq m:D o=

111 mr neg$ naegid
g mircsoas g meles o métrcs/ndegh iy melirs/ndeq 1)

i

1
Bl
1
E1
i
&
1
&l

Thanks

Thanks to the mind organizer for holding such a great contest, the large mind dataset is
very valuable for recommendation research.

The MIND paper helped me a lot.
https://msnews.github.io/assets/doc/ACL2020 MIND.pdf

Also learn a lot from the excellent open source code microsoft provides.

https://github.com/microsoft/recommenders

I'm very fortunate to have the chance to focus on the rank model of Sogou feed. Great
thanks to all my feed colleagues.

https://msnews.github.io/assets/doc/ACL2020_MIND.pdf
https://github.com/microsoft/recommenders

