
MIND News Recommendation Challenge 2020
Technical Report for 4th Place (3rd Prize) Solution

Mathieu Ravaut
Independent, France

mathieu.ravaut@gmail.com

1 Introduction

Online news are now ubiquitous and are accessed on
billions of devices daily [1]. With the abundance of
news content being created everyday, it is of greater and
greater importance to filter out news and recommend a
selected relevant few to each user. Without news recom-
mendation, user experience would be very poor as users
would drown in the flow of articles.

In the MIND News Recommendation Challenge, the
participants task is to build a model predicting whether
or not a user will click on a given news, given a user his-
tory. In other words, given a user news clicking history:

historyi = [historyi1 , ..., historyini
]

and a list of candidates:

candidatesi = [candidatesi1 , ..., candidatesimi
]

where ni and mi are the history length and the number
of candidates for user i, respectively, we shall predict mi

probabilities, one for each candidate news article.

For this challenge, we leverage the new MIND dataset
[2]. This large-scale dataset provides 24,155,470 clicks
sampled from 1,000,000 users on 161,013 articles, col-
lected from logs of Microsoft News over a six weeks pe-
riod. Clicks from the last week are used for test, while
those from the fifth week are used for training and val-
idation. Among this fifth week, the last day is used for
validation. Clicking history is extracted over the first
four weeks. Besides, the dataset comprises multiple in-
formation on each news article: title, abstract, body,
category, sub-category, and extracted entities from the
title and the abstract.

Models are evaluated with Area Under the ROC Curve
(AUC) computed over each impression list then averaged
over users, mean reciprocal rank (MRR), and normalized
discounted cumulative gain for 5 and 10 shown recom-
mendations (nDCG@5 and nDCG@10). AUC is used for
the final ranking.

2 Approach: NRMS with attentive
multi-view learning

An intuitive way to model the news recommendation
problem is to compute a representation of the user, a
representation of the candidate news article, and then
dot-product the two representations to get the click like-
lihood prediction. Typically, neural networks are used
as encoders to get user and news representations. The
news encoder can be used on the user’s news clicking
history as a base block for the user representation.

My main approach relies on the recent Neural
News Recommendation with Multi-Head Self-Attention
(NRMS) model [3]. In this model, the news encoder
first layers consists in word embeddings on the title. The
second layer is word-level self-attention, to capture in-
teraction between the title’s words. Lastly, an additive
attention mechanism forms the third layer of the news
encoder, to capture the importance of each word. The
NRMS user encoder follows the same principles. After
getting the news representation of each news in the his-
tory, a news-level multi-head self-attention layer is used
to get the relatedness between news, as we can assume
that news from a same user history are related. Then,
an additive attention network computes the importance
of each news article.

The original version of NRMS only leverages news ti-
tles. After implementing the NMRS model on news ti-
tles, as suggested by the MIND paper [2], I experimented
with incorporating other sources of text data than the
title. Since concatenating text channels (e.g. title, ab-
stract, etc) makes little sense, one has to get representa-
tions for each text channel first. I used multiple NRMS
news encoders, one for each text channel. Then, I lever-
aged attentive multi-view learning (NAML) to get a uni-
fied and meaningful representation [4], shown in Figure
1. Specifically, the last component of the news encoder
in NAML is attentive pooling, which allows to weigh
each text channel. Thus, with such attentive pooling,
one can theoretically work with as many text channels
as available.



Figure 1: Overview of NRMS with attentive multi-view
model applied on three text channels: title, abstract and
body.

3 Models

I experimented with several choices of text channels in
the NRMS with attentive multi-view learning. The best
performing ones were:

• Title + abstract + category + sub-category
(TACS)

• Title + abstract + body + category + sub-category
(TABCS)

• Title + abstract + category + sub-category + fea-
tures (TACSF)

• Title + abstract + body + category + sub-category
+ features (TABCSF)

• Title + abstract + category + sub-category + fea-
tures + entities (TACSFE)

”Features” here designate manually engineered news-
level features designed to capture a news article popular-
ity. These features were built over the clicking histories
only. These features are: how many users clicked on an
article (during the whole six weeks period), the mean and
standard deviation (over users) of the number of news
that these users clicked on per session, and the mean
and standard deviation (over users) of the total number
of news that these users clicked on during the period.

Furthermore, since my best submissions are ensembles
of multiple models, I also built models of different na-
ture to get less correlated predictions and improve the
ensembling:

• Long-and-Short-Term User Representation
(LSTUR) [5]. This recently introduced deep

news recommendation model proposes an elegant
way to learn both short-term and long-term user
preferences. The sort-term user representation is
modeled with a GRU [6] recurrent network, while
the long-term one is learned through embedding
the user ID. I trained a LSTUR model on title +
abstract + category + sub-category + features,
and experimented with both LSTM [7] and GRU
architectures as short-term user encoders. In
my implementation of LSTUR, I also leveraged
multiple text channels with attentive multi-view
learning

• XGBoost [8]. This gradient boosting decision tree
package is a classical machine learning algorithm
successfully used on multiple recommender systems
competitions [9]. I trained an XGBoost model on
news-level features as described above, then aggre-
gated over the user history and concatenated with
news-level features from the news candidate impres-
sion list.

4 Experiments & Results

All experiments were run on two GPUs: a NVIDIA GTX
2060 6GB, and a NVIDIA GTX 1080 Ti 11GB. All ex-
periments were run on an Intel Core i7-10750H CPU @
2.60GHZ with 12 cores.

All deep neural network models were implemented
in Python, in the Keras framework [10]. The Mi-
crosoft Recommenders package (https://github.com/
microsoft/recommenders) was used as a starting point
for the neural network implementations.

Models were trained with the Adam optimizer [11],
and a learning rate of 0.001, which was the best among
the list [0.1, 0.01, 0.001, 0.0001] of learning rates tried.
Models were evaluated on the validation set three times
per epoch. NRMS and LSTUR models were overfitting
after training for more than a few epochs, and I used
early stopping to find the best iteration to stop training
at. Typically, this best iteration was between 1 and 2
epochs.

With an average abstract length of 43 words, and an
average body length of 585 words [2], using titles along-
side both abstracts and bodies becomes challenging for
memory usage. I truncated abstracts to the first 40
words, which conveniently did not harm the performance
too much compared with taking a long subset of 70 or 80
words. Regarding bodies, I first summarized them with
the pysummarization Python package (https://pypi.
org/project/pysummarization/1.0.5/), reducing the
average body length to 182 words. I further capped body
length to the first 300 words.

Table 1 shows results of each individual model on the
validation set.

2



Model Validation AUC
NRMS baseline (title only) 67.94

NRMS TACS 68.71
NRMS TABCS 69.02
NRMS TACSF 69.14

NRMS TABCSF 68.62
NRMS TACSFE 69.29
LSTUR TACSF 68.82

XGBoost 57.35

Table 1: Validation AUC for the different models used.
The NRMS baseline with just the title was not included
in the final ensemble.

Throughout this competition, I have found a few tricks
to be of critical importance to achieve competitive re-
sults:

• Weighted average ensembles. Ensembling dif-
ferent models significantly helped push the AUC
higher. Assigning higher weights to better perform-
ing models worked better than vanilla averaging,
and it is worth noting that even vanilla averaging
significantly improved on the best model in the en-
semble. To blend models, I also experimented with
ranks in the following manner: rank predictions over
all models, then sum ranks for each news candidate,
and rank news candidate from the lowest sum to the
highest. Such process was performing slightly lower
than weighted averaging.

• Training on the validation set. A common way
to push model performance higher is to re-train the
model on the concatenation of the training and val-
idation sets. More training data may help, but
training blindly also means a greater risk of over-
fitting. Typically, the best early stopping iteration
is found by tracking the validation set performance,
then one re-trains on the concatenated set for this
exact number of iterations. In this competition, it
may be due to the temporal nature of the train-
ing/validation/test split that training on the vali-
dation set gives an improvement.

• Snapshot ensembling. Lastly, I also found it
slightly beneficial to include several checkpoints
from a given model instead of just one in the final
ensemble.

Table 2 shows results of ensembles on the test set. My
final ensemble (last row of Table 2) consists of 13 mod-
els: two NRMS TACS, two NRMS TABCS (one trained
on T, and one trained on T+V), four NRMS TACSF
(two trained on T, and two trained on T+V), one NRMS
TABCSF (trained on T+V), two NRMS TACSFE (one
trained on T, and one trained on T+V), one LSTUR,
and one XGBoost. This final model achieves fifth place

Model Public Test AUC
Weighted avg T+V 70.26

Weighted avg T and T+V 70.40
Weighted avg T and T+V
+ snapshot ensembling

70.44

Table 2: Test AUC for my best ensembles. The last
row represents my selected submission. ”T” designates
models trained on the training set, and ”T+V” mod-
els trained on the concatenation of training and vali-
dation sets. ”T and T+V” signifies that the ensemble
contains models trained only on the training set, and
models trained on training+validation.

on both the public and private test sets.

Acknowledgments

I want to thank the organizers of the MIND Challenge
for a great competition in a new research area, as well as
the authors of the MIND paper for creating this dataset
and describing thoroughly multiple experimental setups.

References

[1] Das, A. S., Datar, M., Garg, A. & Rajaram, S.
Google news personalization: scalable online col-
laborative filtering. In Proceedings of the 16th inter-
national conference on World Wide Web, 271–280
(2007).

[2] Wu, F. et al. Mind: A large-scale dataset for news
recommendation. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, 3597–3606 (2020).

[3] Wu, C. et al. Neural news recommendation with
multi-head self-attention. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), 6390–6395 (2019).

[4] Wu, C. et al. Neural news recommendation
with attentive multi-view learning. arXiv preprint
arXiv:1907.05576 (2019).

[5] An, M. et al. Neural news recommendation with
long-and short-term user representations. In Pro-
ceedings of the 57th Annual Meeting of the Associa-
tion for Computational Linguistics, 336–345 (2019).

[6] Chung, J., Gulcehre, C., Cho, K. & Bengio,
Y. Empirical evaluation of gated recurrent neu-
ral networks on sequence modeling. arXiv preprint
arXiv:1412.3555 (2014).

[7] Hochreiter, S. & Schmidhuber, J. Long short-term
memory. Neural computation 9, 1735–1780 (1997).

3



[8] Chen, T., He, T., Benesty, M., Khotilovich, V. &
Tang, Y. Xgboost: extreme gradient boosting. R
package version 0.4-2 1–4 (2015).

[9] Volkovs, M. et al. Two-stage model for automatic
playlist continuation at scale. In Proceedings of the
ACM Recommender Systems Challenge 2018, 1–6
(2018).

[10] Chollet, F. et al. Keras: The python deep learning
library. ascl ascl–1806 (2018).

[11] Kingma, D. P. & Ba, J. Adam: A method
for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014).

4


