Boosting Share Routing for Multi-task Learning

Xiaokai Chen Tencent PCG China dzhchxk@126.com

Xiaoguang Gu Tencent PCG China ryanxggu@tencent.com Libo Fu Tencent PCG China derekfu@tencent.com

Introduction

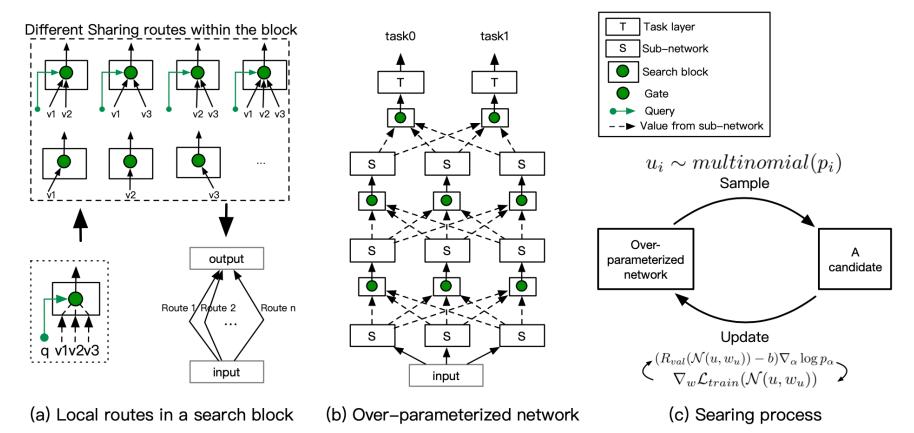
- Multi-task learning (MTL) aims to make full use of the knowledge contained in multi-task labels to improve the overall performance.
- Compared with learning tasks separately MTL benefits a lot:
 - It not only reduces maintenance cost of online systems but also could achieve better performance.

Introduction

- Negative transfer
 - Suitable sharing mechanism is hard to design as the relationship among tasks is complicated.

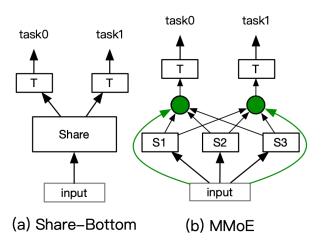
Introduction

- MTNAS
 - Multi-Task Neural Architecture Search
 - It can efficiently find a suitable sharing route for a given MTL problem.



Related work

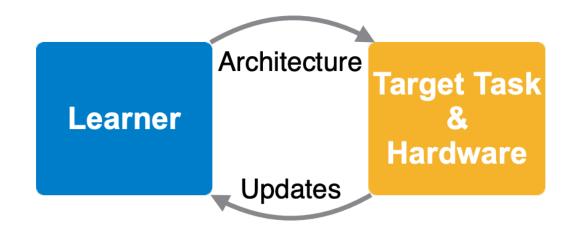
- Parameter sharing in Multi-task learning.
 - Two typical approaches:



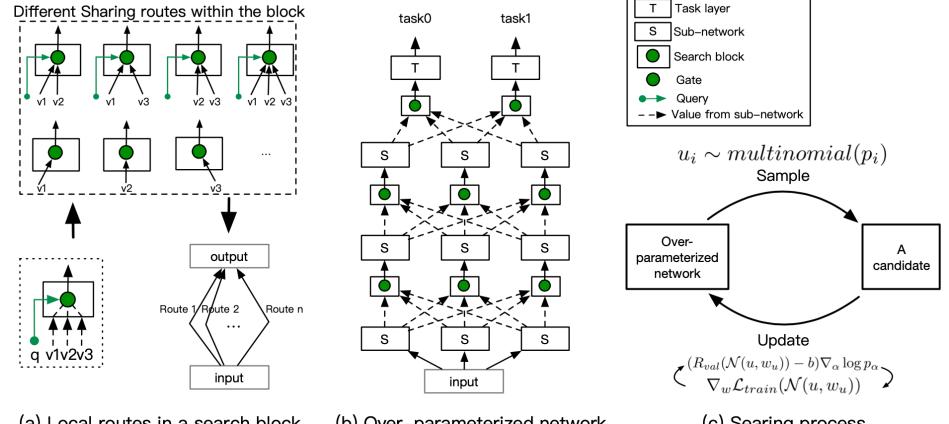
- The limits of MMoE:
 - It forces all experts to contribute to all tasks, which limits the flexibility of the sharing route.
 - Gating, can hardly help learning a sparse connection although theoretically possible.

Related work

- Neural architecture search(NAS)
 - Reinforcement learning based methods
 - Evolutionary algorithm based methods
 - Gradient based methods
 - Proxyless



• Framework overview

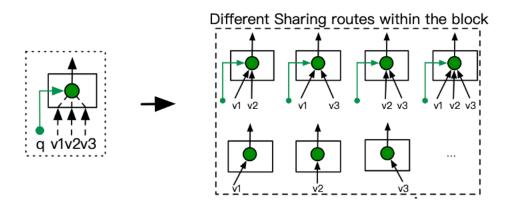


(a) Local routes in a search block

(b) Over-parameterized network

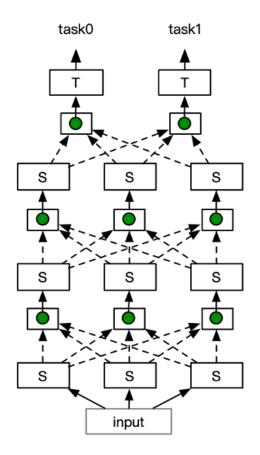
(c) Searing process

- Framework overview
 - A search block



(a) Local routes in a search block

- Framework overview
 - The whole search space

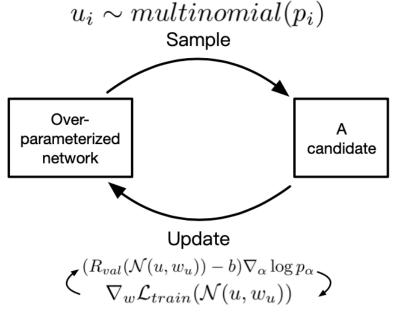


(b) Over-parameterized network

- Search a promising sharing route
 - Introduce architecture parameters: α_i
 - Sampling probability: $p_i = softmax(\alpha_i)$
 - Utilizing REINFORCE to optimize α_i

$$J(\alpha) = E_{u \sim p(\alpha)} R_{val}(\mathcal{N}(u, w_u))$$
$$\nabla_{\alpha} J(\alpha) = (R_{val}(\mathcal{N}(u, w_u)) - b) \nabla_{\alpha} \log p_{\alpha}$$

• The architecture parameters and the weights of the network are optimized **alternately**.



(c) Searing process

Experiment

 Compared with single task model as well as typical multi-task approaches

Method]]	BookCros	sing		Tiktol	:
Methou	AUC0	AUC1	MTL-Loss	AUC0	AUC1	MTL Loss
Single	0.7842	-	-	0.7485	-	-
Siligie	-	0.7984	-	-	0.9428	-
Share-Bottom	0.7834	0.8014	0.7322	0.7478	0.9415	0.6020
MMoE	0.7885	0.8022	0.7302	0.7488	0.9425	0.6006
ML-MMoE	0.7884	0.8051	0.7299	0.7487	0.9421	0.6011
AutoMTL(Ours)	0.7907	0.8086	0.7247	0.7507	0.9467	0.5930

Table 2: Results on BookCrossing and Tiktok (higher AUC is better).

Table 3: Results on GoodRead (higher AUC is better).

Method	AUC0	AUC1	AUC2	MTL Loss
	0.8104	-	-	-
Single	-	0.7752	-	-
	-	-	0.8209	-
Share-Bottom	0.8250	0.7748	0.8415	1.0726
MMOE	0.8255	0.7761	0.8441	1.0716
ML-MMOE	0.8244	0.7743	0.8443	1.0720
AutoMTL(ours)	0.8281	0.7771	0.8460	1.0656

Experiment

• The learned sharing route on GoodReads dataset.

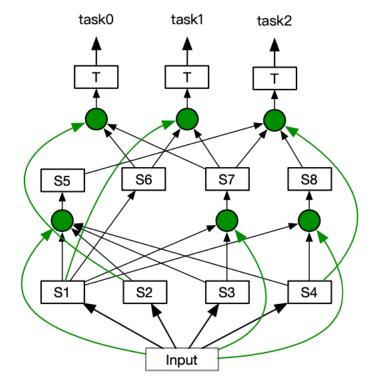


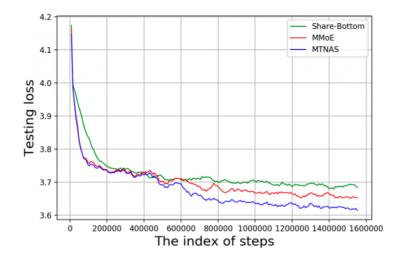
Table 4: The Pearson correlation (PCC) of tasks.

Dataset	t0&t1	t1&t2	t0&t2
GoodReads	0.493	0.124	0.245

(c) Architecture on GoodReads

Experiment

• Analysis on synthetic data



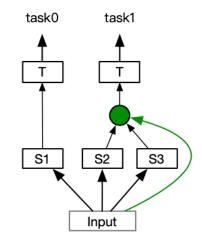


Figure 4: Comparison of Share-Bottom, MMoE and MTNAS on synthetic data with two unrelated tasks. The plot show total loss over steps. Figure 5: The learned sharing route with L=1,H=3.

Conclusion

- MTNAS
 - can efficiently find a suitable sparse sharing route for MTL
 - consistently outperforms single-task model and typical multi-task approaches on three real-world datasets
 - Experiments on synthetic data further demonstrates that, by allowing sparse connection among shared sub-networks, MTNAS is able to find a sparse route that can effectively alleviate negative transfer when tasks are less related.

